Купить бумажную книгу и читать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Читай Город".
Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.
Реклама. ООО «Новый Книжный Центр», ИНН: 7710422909, erid: MvGzQC98w3Z1gMq1kx5ACoy5.
Название: Лекции об уравнениях с частными производными
Автор: Петровский И.Г.
Издательство: Физматлит
Год издания: 1961
Страниц: 401
Язык: русский
Формат: djvu
Качество: хорошее
Размер: 8.7 Мб
Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические, параболические и гиперболические. Для каждого типа исследуются вопросы существования и единственности решения и его непрерывной зависимости от заданных начальных и граничных условий.
Книга может быть рекомендована студентам математических и естественно-научных специальностей, в которых требуется знать и использовать уравнения в частных производных.
Содержание:
Глава I Введение Классификация уравнений
* 1 Определения Примеры
* 2 Задача Коши Теорема Ковалевской
* 3 Обобщение задачи Коши Понятие о характеристике
* 4 О единственности решения задачи Коши в области неаналитических функции
* 5 Приведение к каноническому виду в точке и классификация уравнений второго порядка с одной неизвестной функцией
* 6 Приведение к каноническому виду уравнения с частными производными второго порядка по двум независимым переменным в окрестности точки
* 7 Приведение к каноническому виду системы линейных уравнений с частными производными первого порядка по двум независимым переменным
Глава II Гиперболические уравнения
* Раздел I
* ЗАДАЧА КОШИ В ОБЛАСТИ НЕАНАЛИТИЧЕСКИХ ФУНКЦИЙ
* 8 Корректность постановки задачи Коши
* 9 Понятие об обобщенных решениях
* 10 Задача Коши для гиперболических систем с двумя независимыми переменными
* 11 Задача Коши для волнового уравнения Теорема о единственности решения
* 12 Формулы, дающие решение задачи Коши для волнового уравнения
* 13 Исследование формул, дающих решение задачи Коши
* 14 Преобразования Лоренца
* 15 Математические основы специальной теории относи тельности
* 16 Обзор основных фактов в теории задачи Коши и некоторые исследования для общих гиперболических уравнений
* Раздел II КОЛЕРАЦИЯ ОГРАНИЧЕННЫХ TЕЛ
* 17 Введение
* 18 Единственность решения смешанной задачи
* 19 Непрерывная зависимость решения от начальных условий
* 20 Метод Фурье для уравнения струны
* 21 Общий метод Фурье (предварительное рассмотрение)
* 22 Общие свойства собственных функций и собственных значений
* 23 Обоснование метода Фурье
* 24 Применение функции Грина к задаче о собственных значениях и к обоснованию метола Фурье
* 25 Изучение колебаний мембраны
* 26 Дополнительные сведения о собственных функциях и о разрешимости смешанной задачи для гиперболических уравнений
Глава III Эллиптические уравнения
* 27 Введение
* 28 Свойство максимума и минимума и ею следствия
* 29 Решение задачи Дирихле для круга
* 30 Теоремы об основных свойствах гармонических функций
* 31 Доказательство существования решения задачи Дирихле
* 32 Внешняя задача Дирихле
* 33 Вторая краевая задача
* 34 Теория потенциала
* 35 Решение краевых задач с помощью потенциалов
* 36 Метод сеток для приближенного решения задачи Дирихле
* 37 Обзор некоторых результатов для более общих эллиптических уравнений
Глава IV Параболические уравнения
* 38 Первая краевая задача Теорема о максимуме и минимуме
* 39 Решение первой краевой задачи для прямоугольника методом Фурье
* 40 Задача Коши
* 41 Обзор некоторых дальнейших исследований уравнений параболического типа
* Дополнение
* 42 Решение первой краевой задачи для уравнения теплопроводности методом сеток 43 Замечания о методе сеток
Купить бумажную книгу или электронную версию книги и скачать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Читай Город".
Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.
Реклама. ООО «Новый Книжный Центр», ИНН: 7710422909, erid: MvGzQC98w3Z1gMq1kx5ACoy5.
Дата создания страницы: