Купить бумажную книгу и читать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".
Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.
Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.
Название: Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений
Автор: Трофимов В.В., Фоменко А.Т.
Издательство: Наука
Год издания: 1985
Страниц: 453
Язык: русский
Формат: pdf
Качество: хорошее
Размер: 17 Мб
Посвящена интересному и актуальному направлению,,бурно развивающемуся в последние годы, в рамках которого открыты важные методы интегрирования гамильтоновых уравнений и получены новые результаты о геометрической структуре интегрируемых уравнений. Большинство вопросов впервые изложены в виде, доступном для широкого круга специалистов.
Цель данной книги — доступно рассказать о некоторых новых методах интегрирования гамильтоновых дифференциальных уравнений на симплектических многообразиях. Проблема интегрирования дифференциальных уравнений как обыкновенных, так и в частных производных является классической. К настоящему времени в математике имеется достаточно мощный арсенал различных средств, используемых при интегрировании уравнений. Выбор средств и методов, которые используются при решении конкретных задач, возникающих, например, в геометрии, механике или математической физике, сильно зависит от того, какой смысл мы вкладываем в выражение "решить уравнение". Например, если искать решение в каком-нибудь функциональном пространстве, то естественно привлекать методы функционального анализа. Выделим три аспекта в изучении дифференциальных уравнений: а) явное интегрирование; б) качественные методы; в) интегрируемость по Лиувиллю.
Традиционный подход к изучению свойств решений дифференциальных уравнений состоит в том, что сначала явно определяют полное множество решений и лишь потом анализируют их свойства. Именно так поступали Лежандр, Лагерр, Бессель, Эрмит при изучении дифференциальных уравнений второго порядка. Однако, помимо уравнений данного типа, в различных приложениях возникают линейные или нелинейные уравнения выше второго порядка. Возникает вопрос о возможности отыскания полного набора решений для качественного описания поведения общих решений уравнений, моделирующих интересующую нас систему.
Для научных работников — математиков, физиков, механиков, аспирантов и студентов соответствующих специальностей. Может быть использована как пособие по специальным курсам: симплектическая геометрия, интегрируемые системы и др.
Купить бумажную книгу или электронную версию книги и скачать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".
Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.
Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.
Дата создания страницы: