GPU Computing Gems Emerald Edition

Купить бумажную книгу и читать

Купить бумажную книгу

По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".

Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.

Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.

Название:GPU Computing Gems Emerald Edition

Издательство:NVIDIA

Автор: Wen-mei W. Hwu

Год: 2011

Количество страниц:886

Язык:English

Формат:pdf

Размер:20,1 Mb

Graphics processing units (GPUs) can do much more than render graphics. Scientists and researchers increasingly look to GPUs to improve the efficiency and performance of computationally-intensive experiments across a range of disciplines.

GPU Computing Gems: Emerald Edition brings their techniques to you, showcasing GPU-based solutions including:

Black hole simulations with CUDA

GPU-accelerated computation and interactive display of molecular orbitals

Temporal data mining for neuroscience

GPU -based parallelization for fast circuit optimization

Fast graph cuts for computer vision

Real-time stereo on GPGPU using progressive multi-resolution adaptive windows

GPU image demosaicing

Tomographic image reconstruction from unordered lines with CUDA

Medical image processing using GPU -accelerated ITK image filters

41 more chapters of innovative GPU computing ideas, written to be accessible to researchers from any domain

GPU Computing Gems: Emerald Edition is the first volume in Mor..gan Ka.ufm,.ann's Applications of GPU Computing Series, offering the latest insights and research in computer vision, electronic design automation, emerging data-intensive applications, life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, and video / image processing.

Covers the breadth of industry from scientific simulation and electronic design automation to audio / video processing, medical imaging, computer vision, and more

Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution

Offers insights and ideas as well as practical "hands-on" skills you can immediately put to use

Дата создания страницы: