Smart membranes and sensors: synthesis, characterization, and applications

Купить бумажную книгу и читать

Купить бумажную книгу

По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".

Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.

Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.

Автор: Annarosa Gugliuzza

Название: Smart membranes and sensors: synthesis, characterization, and applications

Язык: English

Издательство: Hoboken, New Jersey: John Wiley and Sons, Inc.

Год: 2014

Формат: pdf

Размер: 11,6 mb

Страниц: 448

This book facilitates the access to the various disciplines, highlighting their many points of contacts and making the clear the message that membrane-based sensors represent the future of the research in every field, including chemistry, biology, biomedicine, textiles, and electronics.

This book deals with materials smartness and suitable techniques to assemble and characterize them in sensor-like membranes.

 

Preface xv

Part I: Sensing Materials for Smart Membranes 1

1 Interfaces Based on Carbon Nanotubes, Ionic Liquids and Polymer Matrices for Sensing and Membrane Separation Applications 3

Maria Belén Serrano-Santos, Ana Corres Ortega and Thomas Schafer

1.1 Introduction 3

1.2 Ionic Liquid-Carbon Nanotubes Composites for Sensing Interfaces 5

1.3 Ionic Liquid Interfaces for Detection and Separation of Gases and Solvents 11

1.4 Ionic Liquid-Polymer Interfaces for Membrane Separation Processes 16

1.5 Conclusions 18

Acknowledgement 19

References 19

2 Photo-Responsive Hydrogels for Adaptive Membranes 21

David Diaz Diaz and Jeremiah A. Johnson

2.1 Introduction 21

2.2 Photo-Responsive Hydrogel Membranes 23

2.2.1 Photo-Responsive Moiety: Cinnamylidene 23

2.2.2 Photo-Responsive Moiety: Triphenylmethane Leuco Derivatives 29

2.2.3 Photo-Responsive Moiety: Azobenzene 36

2.2.4 Photo-Responsive Moiety: Spirobenzopyran 38

2.2.5 A Comparative Example Of Different Chromophores 42

2.3 Photo-Thermally Responsive Hydrogel Membranes 44

2.3.1 Optical absorber: Gold Nanoparticles 45

2.3.2 Optical Absorber: Graphene Oxide 46

2.4 Summary 46

2.5 Acknowledgements 48

Abbreviations 48

References 49

3 Smart Vesicles: Synthesis, Characterization and Applications 53

Jung-Keutt Kim, Chang-Soo Lee and Eunji Lee

3.1 Introduction 53

3.2 Synthesis of Soft Vesicles 54

3.2.1 Self-assembly into Vesicles 55

3.2.2 Liposomes 55

3.2.3 Polymersomes 57

3.2.4 Vesicles based on Small Molecules 59

3.2.5 Direct Synthesis 62

3.3 Synthesis of Hard Vesicles 64

3.3.1 “Soft” Templates for the Synthesis of Hard Vesicles 64

3.3.2 Hollow Silica Spheres 66

3.4 Characterization of Vesicular Structures 68

3.4.1 Microscopy 69

3.4.2 Scattering 69

3.5 Stimuli-Responsive Behaviors of Vesicular Structures 72

3.5.1 Thermo-Responsive Vesicles 72

3.5.2 pH-Responsive Vesicles 74

3.5.3 Others 76

3.6 Application of Vesicles 78

3.6.1 Molecular Separation by Vesicles 79

3.6.2 Chemical Sensors 81

3.6.3 Nanoreactors and Microreactors 84

3.6.4 Catalysts 86

3.6.5 Drug Delivery Vehicles 89

3.7 Conclusions 91

Acknowledgment 92

References 92

Part 2: Stimuli-Responsive Interfaces 105

4 Computational Modeling of Sensing Membranes and Supramolecular Interactions 107

Giacomo Saielli

4.1 Introduction 107

4.2 Non-covalent Interactions: A Physical and a Chemical View 109

4.3 Physical Interactions 109

4.4 Chemical Interactions 114

4.5 Computational Methods for Supramolecular Interactions 117

4.6 Classical Force Fields 127

4.7 Conclusions 139

References 140

5 Sensing Techniques Involving Thin Films for Studying Biomoiecular Interactions and Membrane Fouling Phenomena 145

Gabriela Diaconu and Thomas Schäfer

5.1 Introduction 145

5.2 Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) 146

5.3 Surface Plasmon Resonance (SPR) 148

5.4 Applications of SPR and QCM-D 151

5.5 Conclusions 159

Acknowledgements 160

References 160

6 Smart Membrane Surfaces: Wettability Amplification and Self-Healing 161

Annarosa Gugliuzza

6.1 Introduction 161

6.2 Basics of surface wettability 162

6.3 Amplified Wettability 164

6.4 Actuation Mechanisms 165

6.4.1 Electrical Switching 165

6.4.2 Light-Driven Switching 166

6.4.3 Thermal Switching 168

6.4.4 pH-Driven Switching 168

6.4.5 Molecular Switching 169

6.4.6 Mechanical switching 170

6.5 Self-Powered Liquid Motion 170

6.6 Self-Cleaning Mechanisms 172

6.6.1 Droplet Roll-Off On Superhydrophobic Surfaces 173

6.6.2 Photocatalysis For Self-Cleaning Surfaces 174

6.7 Self-Healing Concepts And Strategies 175

6.8 Repairable Surface Properties 177

6.8.1 Restoring Surface Superhydrophobicity 178

6.8.2 Self-Healing for Durable Anti-Fouling Properties 178

6.9 Conclusions and Perspectives 179

References 180

7 Model Bio-Membranes Investigated by AFM and AFS: A Suitable Tool to Unravel Lipid Organization and their Interaction with Proteins 185

Andrea Alessandrini and Paolo Facci

7.1 Introduction 186

7.2 Supported Lipid Bilayers 189

7.2.1 Preparation Techniques 189

7.2.2 Chemical-Physical Properties of Supported Lipid Bilayers 191

7.2.3 Transmembrane Protein Inclusion 197

7.3 Atomic Force Microscopy (AFM) and Phase Behavior of Slbs 199

7.3.1 Transitions Induced by Temperature 199

7.3.2 Transitions Induced by pH 204

7.4 Atomic Force Spectroscopy (AFS) of Supported Lipid Bilayers 205

7.4.1 Mechanical Moduli Studied by AFS 208

7.4.2 Energy Landscape of Lipid Bilayer Breakthrough and Comparison with Lipid Pore Formation 210

7.5 Lipid/Protein Interactions 213

7.5.1 Protein Partitioning in Membrane Domains 213

7.5.2 Functional Relevance of Partitioning 216

7.6 Conclusions 218

References 218

Part 3: Directed Molecular Separation 227

8 Self-Assembled Nanoporous Membranes for Controlled Drug Release and Bioseparation 229

Dominique Scalarone, Pierangiola Bracco and Francesco Trotta

8.1 Introduction 229

8.2 General Aspects of Block Copolymer Self-Assembly 231

8.3 Block Copolymer Based Membranes 233

8.4 Fabrication of Nanoporous Membranes Derived from Block Copolymers 234

8.4.1 Structure of Nanoporous Membranes: Composite and Stand-alone Membranes 234

8.4.2 Controlling Ordering and Orientation in Block Copolymer Derived Membranes 238

8.4.3 Pore Generation in Nanostructured Polymer Films 241

8.5 Tunability of Surface Properties 242

8.6 Application of Block Copolymer Derived Membranes to Bioseparation and Controlled Drug Release 244

8.7 Conclusion 250

References 250

Abbreviations 253

9 Hybrid Mesoporous Silica for Drug Targeting 255

Luigi Pasqua, Piluso Rosangela, Ilenia Pelaggi and Catia Morelli

9.1 Introduction 256

9.2 Synthesis and Characterization of Bifunctional Hybrid Mesoporous Silica Nanoparticles Potentially Useful for Drug Targeting 257

9.3 Drug-Loaded Folic-Acid-Grafted Msns Specifically Target FR Expressing Tumour Cells [ 16] 260

9.4 Conclusion 266

References 268

10 Molecular Recognition-driven Membrane Processes 269

Laura Donato, Rosalinda Mazzei, Catia Algieri, Emma Piacentini, Teresa Poerio and Lidietta Giorno

10.1 Molecular Imprinting Technique 270

10.1.1 Molecularly Imprinted Membranes (MIMs) 271

10.1.2 MIMs Preparation: Methods And Materials 271

10.1.3 Application Of MIMs 273

10.2 Affinity Membranes 275

10.2.1 Preparation Of Affinity Membranes 276

10.2.2 Affinity Membranes For Chiral Separation 279

10.2.3 Affinity Membranes For Protein Separation 280

10.3 Cyclodextrins As Molecular Recognition Elements 281

10.4 Zeolite Membranes as Molecular Recognition Devices: Preparation and Characterization 283

10.4.1 Zeolite Membranes In Pharmaceutical Field 284

10.4.2 Zeolite: Materials For Sensors 286

10.5 Functionalized Particles-loaded Membranes For Selective Separation Based On Molecular Recognition 287

10.6 Biphasic Enzyme Membrane Systems with Enantioselective Recognition Properties for Kinetic Resolution 291

10.7 Membrane Surface Modification 292

10.7.1 Coating 292

10.7.2 Self-assembly 293

10.7.3 Chemical Treatment 293

10.7.4 Plasma Treatment 294

10.7.5 Graft Polymerization 294

References 296

Part 4: Membrane Sensors and Challenged Applications 301

11 Electrospun Membranes for Sensors Applications 303

Pierattgiola Bracco, Dominique Scalarone and Francesco Trotta

11.1 Introduction 303

11.2 Basic Principles of Electrospinning 304

11.3 Control of the Electrospinning Process 306

11.3.1 Fibers Morphology and Diameter 306

11.3.2 Fibers Arrangement, Composition and Secondary Structure 308

11.4 Application of Electrospun Materials to Ultrasensitive Sensors 311

11.4.1 Metal-Oxide-Based Resistive Sensors 311

11.4.2 Conducting Polymer Based Resistive Sensors 316

11.4.3 Optical Sensors 319

11.4.4 Acoustic Wave Sensors 322

11.4.5 Amperometric Biosensors 325

11.5 Conclusions 329

Abbreviations 330

References 330

12 Smart Sensing Scaffolds 337

Carmelo De Maria, Yudatt U hulanza, Giovanni Vozzil and Arti Ahlnwalia

12.1 Introduction 337

12.2 Composite Sensing Biomaterial Preparation 339

12.3 Composite Sensing Biomaterial Characterisation 340

12.4 SWNTs-Based Composite Films Structural Properties 341

12.5 Tensile Properties of SWNTs-Based Composite Films 343

12.6 Electrical Properties of SWNTs-Based Composites Films 348

12.7 Electromechanical Characterisation and Strain-Dependence Measurement 350

12.8 Cell Sensing Scaffolds 352

12.8.1 Preparation 352

12.8.3 Cell Testing 353

12.8.4 Membrane impedance measurement 354

12.8.5 Modelling Sensing Scaffold 357

12.9 Processing of CNT Composite: Microfabrication of Sensing Scaffold 360

12.10 Conclusions 361

References 362

13 Nanostructured Sensing Emulsion Droplets and Particles: Properties and Formulation by Membrane Emulsification 367

Emma Piacentini, Alessandra Imbrogno and Lidietta Giorno

13.1 Introduction 367

13.2 Emulsions and Emulsification Methods 370

13.2.1 Rotor-stator Systems 370

13.2.2 High-pressure Homogenizer 371

13.2.3 Ultrasonication 371

13.2.4 Membrane Emulsification 371

13.2.5 Membrane Parameters 375

13.2.6 Phase Parameters 376

13.2.7 Process Parameters in Dynamic Membrane Emulsification 377

13.2.8 Membrane Emulsifications Devices 378

13.2.9 Material nature and sensing properties 380

13.2.10 Temperature and pH responsive-materials 380

13.2.11 Physical Sensitive Material (Light, Magnetic and Electrical Field) 386

13.2.12 Biochemical Responsive Materials 387

13.2.13 Phase Change Material (PCM) 388

13.3 Senging Particles Produced by Membrane-Based Process 389

13.3.1 Temperature and pH Responsive-materials 389

13.3.2 Biochemical Responsive Materials 392

13.3.3 Physical Sensitive Material 395

13.3.4 Molecular Imprinting 397

13.4 Conclusions 397

References 398

14 Membranes for Ultra-Smart Textiles 401

Annarosa Gugliuzza and Enrico Drioli

14.1 Introduction 401

14.2 Membranes and Comfort 403

14.2.1 Breathable Membranes 404

14.2.2 Membranes as Heat Exchangers 406

14.3 Adaptive Membranes for Smart Textiles 407

14.3.1 Shape Memory-based Membranes 408

14.3.2 Responsive Gel-based Membranes 409

14.3.3 Phase Changing Materials (PCMs) in Membranes 410

14.3.4 Photochromie Compounds for Smart Membranes 411

14.4 Barrier Functions of Membranes 411

14.4.1 Waterproof Function 412

14.4.2 Antibacterial Action 412

14.4.3 Scents Release and Superabsorbent Action 412

14.4.4 Warfare Agent Defense 413

14.5 Membrane Materials for Self-cleaning Function 413

14.6 Interactive Membranes for Wearable Electronics 414

14.7 Conclusions and Prospects 415

References 416

Дата создания страницы: