Купить бумажную книгу и читать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".
Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.
Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.
Название: Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications
автор: Omar Oreifej, Mubarak Shah
Издательство: Springer
Год выпуска: 2014
ISBN: 978-3319041834
Формат: PDF
Размер: 10 MB
Количество страниц: 114
Язык: Английский
Описание: Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.
Купить бумажную книгу или электронную версию книги и скачать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".
Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.
Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.
Дата создания страницы: