Введение в теорию фракталов

Купить бумажную книгу и читать

Купить бумажную книгу

По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Лабиринт".

Using the button above you can buy paper versions of this book and similar books on the website of the "Labyrinth" online store.

Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgCADz8.

Название: Введение в теорию фракталов

Издательство: Институт компьютерных исследований (Москва-Ижевск)

Год издания: 2002

Автор:

Страниц: 160

Формат: DjVu

Размер: 1.36 MB

Для сайта:

новость восстановлена

Книга посвящена основам теории фракталов и состоит из двух частей и приложения. В первой части рассматриваются конструктивные фракталы, во второй - динамические, а в приложении приводится вспомогательный материал.

Конструктивные фракталы строятся с помощью достаточно простой рекурсивной процедуры, имеют "тонкую" структуру, т.е. содержат произвольно малые масштабы, и обладают самоподобием. Подобные фрактальные множества слишком нерегулярны, чтобы быть описанными на традиционном геометрическом языке. Рассматриваются многочисленные примеры конструктивных фракталов (Кантора, Коха, Минковского, Серпинского, Леви и др.). Проводится их анализ на основе линейных преобразований и вычисления фрактальной размерности. Изложение сопровождается историческими справками.

Вторая часть посвящена фракталам, которые возникают в дискретных нелинейных динамических системах. Это множества, хаусдорфова (или фрактальная) размерность которых больше топологической размерности. К ним относятся одномерные комплексные эндоморфизмы, рассмотренные Жюлиа и Фату в начале 20 века. В книге приводятся основы современной теории подобных эндоморфизмов. Изложение иллюстрируется на примере фракталов Жюлиа, Мандельброта, Ньютона. В книгу включены новые результаты по гиперкомплексной динамике.

В приложении приводится вспомогательный математический материал из теории множеств, обсуждается определение линии, даются основы теории размерности и, прежде всего, хаусдорфовой размерности.

Ссылки от Nyxasha

Дата создания страницы: