Купить бумажную книгу и читать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Буквоед".
Using the button above you can buy paper versions of this book and similar books on the website of the "Bookvoed" online store.
Реклама. ООО «Новый Книжный Центр», ИНН: 7710422909, erid: 5jtCeReLm1S3Xx3LfAELCUa.
Автор: James C. Robinson
Название: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
Издательство: Cambridge University Press
ISBN: 978-0521632041
Год: 2001
Количество страниц: 480
Формат: PDF
Размер: 16 Mb
Язык: English
Для сайта:
This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Купить бумажную книгу или электронную версию книги и скачать
По кнопке выше можно купить бумажные варианты этой книги и похожих книг на сайте интернет-магазина "Буквоед".
Using the button above you can buy paper versions of this book and similar books on the website of the "Bookvoed" online store.
Реклама. ООО «Новый Книжный Центр», ИНН: 7710422909, erid: 5jtCeReLm1S3Xx3LfAELCUa.
Дата создания страницы: